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Full-Wave Spectral-Domain Analysis of
Coplanar Strips
Sotirios G, Pintzos, Member, IEEE

Abstract —In this paper a dynamic analysis of coplanar strips (CPS’S)
is presented. A spectral-domain stationary expression for the propaga-
tion constant has been derived making use of proven concepts of
electromagnetic theory (e.g. the “reaction concept”). For the strip snr-
face cm-rent distribution, which is the trial qnantity in the stationary
expression, a suitable approximation is used. The numerical results,
obtained in a straightforward and eftlcient way, are in excellent agree-
ment with results arrived at by means of more complex methods.
Further, the characteristic impedance of CPSS has been determined on
the base of two commonly used definitions. The numerical results show
a novel aspect of the dynamic behavior of the impedance (power-related
definition) in the upper frequency region.

I. INTRODUCTION

Cw
OPLANAR strips (CPS’S) make up an open planar

ave-guiding structure which along with its complemen-
tary configuration, the coplanar waveguide (CPW), consti-
tutes the “family” of what are called coplanar lines. CPS’S
comprise two parallel metallic strips generally of equal width
placed on the same (upper) side of an ungrounded dielectric
slab (Fig. 1). The possibility of easy mounting of both shunted
elements and elements in series and the relatively large
range of practically realizable impedance values, as well as
the availability of a magnetic field configuration of elliptical
polarization, which is necessary for the realization of nonre-
ciprocal propagation behavior, may be mentioned as some
important features of this transmission line. However, so far
CPS’S have found only moderate application as basic trans-
mission lines for the implementation of microwave compo-
nents. The strips have mainly been used in combination with
the established planar lines, microstrip and microslotline, in
the context of specific hybrid and (recently) monolithic MIC
applications.

Wen introduced coplanar strips 1969 in a paper [2] in
which the new line was investigated by means of a quasi-static
method and under the assumption of infinite extent of the
dielectric substrate. Knorr et al. were the first to publish a
full-wave analysis of CPS’S using Galerkin’s method in the
Fourier transform domain [1]. A limited number of publica-
tions have been presented on the basis of the quasi-static
approach [9]–[1 1].

The purpose of this paper is to present new results on the
dynamic (dispersive) behavior of the line’s propagation char-
acteristics, in particular the characteristic impedance, and to
demonstrate the generality and ease of application of the
present method as well as its efficiency and reliability.
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Fig. 1. Cross section of coplanar strips.

By means of a proven procedure [3], [6] a spectral-domain
variational expression for the propagation constant has been
formulated and numerical results for the dominant propaga-
tion mode of CPS’S have been obtained. They compare
favorably with corresponding results in previous publications
[1]. Further, the characteristic impedance has been calcu-
lated on the basis of two commonly used definitions—’’ereff”
and “transport ed power. ” It should be noted here that the
numerical results arrived at using the more general, trans-
ported power definition show an impedance behavior which
is characterized by a monotonic decrease up to a certain
frequency range and a clear upward trend toward the upper
frequency region. This finding constitutes a novel aspect of
the dynamic behavior of CPS’S given the fact that published
results up to this date seem to anticipate a steady decrease
of the characteristic impedance with increasing frequency [1].

II. VARIATIONAL METHOD

Fig. 1 shows the physical construction of CPS’S. The strips
are assumed to be without losses and the dielectric substrate
is characterized by the dielectric constant, which is taken as
an isotropic scalar quantity. Further, the strips are assumed
to be of negligible thickrtess. In our case, for the determina-
tion of the propagation constant, a variational method is
used in connection with what is referred to as the reaction
concept [5], [4]. Before proceeding to apply this concept to
the structure under investigation, an equivalent, simpler
model will be presented. In compliance with the equivalence
theorem, the metal strips are schematically replaced by
“magnetic wall” (flat tube shaped) coverings outside of which
electric and magnetic Huygens’s sources are introduced. The
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interior of these coverings being field-free, the equivalent

electr~ an~ magnetic source currents are given by ~= ~ X E
and M’= E X Z, respectively, ii being the unit vector normal
to the fictitious enclos~re. However in such a configuration,
the magnetic source 11, owing to its proximity to the mag-
netic wall, is neutralized (“short-circuited”). Therefore with
respect to the described model and referring to the detlni-
tion of “reaction,” an interaction is taking place only be-
tween th~ e~ctric field and the associated electric current
source, J = J,” 6(x – h):

SR=~~&iV. (1)
v

This expression represents the “self-reaction” (SR) of the
field on its own (fictitious) source.

On the other side, the field supported by the configuration
under investigation is source-free; therefore its true self-
reaction must vanish. It can be demonstrated that by requir-
ing an approximate expression for the self-reaction to be
equal to the correct one, a stationary formula for the quan-
tity of interest (propagation constant) can be obtained [4].
The rationale of our approach is then to derive such a
variational formula by first formulating, via the simple equiv-
alent model and’ on the basis of (l), an approximate expres-
sion for the self-reaction and then to equate this expression
to the exact one, which, as has been shown before, is zero. A
stationary formula for the propagation constant is then ob-
tained in the form of the following implicit characteristic
equation:

(2)

In our case, the surface current density ~ on the strips is the
trial quantity for which reasonable approximations can be
made, Its distribution can be thought of as a dynamic extrap-
olation of the (known) static charge or stationary current
distribution on two metallic strips in a homogeneous medium.
This assumption is legitimized by the fact that the dominant
mode of CPS’S is basically of quasi-TEM nature.

Equation (2) is now the starting point for the following
analysis procedure. For the final formulation of this stationa-
ry expression for evaluation purposes, the electric field, E,
must be given in terms of the assumed current distribution.
Its determination via the field equations will be presented in
the following.

III. FIELD DETERMINATION AND

STATIONARY EXPRESSION

The propagation modes which can be supported by an
inhomogeneous, cylindrical structure such as that formed by
CPS’S are of hybrid type, having both an electrical and
magnetic component in the z direction. Thus, the field
components implied in (2) have to be derived from two
v:ctor potentials+in the longitudinal (Cartesian) direction,
A = ZZW E and F = iZZWH [4], the superscripts E and El
denoting electric and magnetic, respectively,

The solution of Helmholtz’s equation for ~~’ H can for-
mally be cast in the form

~~~(x,y,z)=~~~(x,y).e-~~’. (3)

Because of the infinite extent of the CPS’S (Fig. 1) and the
homogeneity (for x = const) in the y direction, (3) is appro-

priately given in form of a Fourier integral:

w~’~(x, y,z) =/m TE’H (X, ky)e’ky ‘dk,e-’~z (4)
—m

where ~E ‘(x, k ~) is the Fourier transform of VE’ ‘(x, Y)
with respect to y. By means of (4) Helmholtz’s equation is
reduced to an ordinary differential equation in one variable:

d2@H(x,k Y)

dx2
+y:w~’~(x, k,)=o (5)

where

y?=k:+P2–~,, ki (6)

i = 1,2,3 designating the subregions in Fig. 1 and k. being
the wavenumber in vacuum. Thus the x dependence of the
field has to be described by harmonic functions. The quantity
V” ‘(x, y) is then specified for the particular subregions as
follows.

Region 1:

@H(X, y) + [A:’H(k)cosh(ylx)

+–~~’H(ky) sinh(ylx)]e]kYY dkY (7a)

y? + k;e, = k; +~2. (7b)

Region 2:

W~H(x, y) =j~ A~’~(kY) e-y ’(X-~ ).e’~’”YdkV (7c)
—cc

y;+k; =k; +f12. (7d)

Region 3:

T~>H(x, y) =~ffi A~H(kY).e~t”X.ej~’YdkY (7e)
—cc

y;+k; =k; +~2 (73=72). (7f)

The next step is to determine the field components needed
for the formulation of the continuity conditions valid at
x= Oandx=h. Forx=h,

EYI = EY2 (8a)

E,l = EZZ (8b)

H,l – H,2 = – J,, (8c)

H,l – H,z = J,y. (8d)

For x = O,

EY1 = E1,3 (9a)

E21 = E,B (9b)

HYI = HY3 (9C)

H,l = HZ3. (9d)

J,Y and J$z are the transversal and longitudinal components
respectively of the surface current density on the strips. They
can also, like the field components, be given in the form of
Fourier integrals in terms of their respective transforms (~$Y
and ~,=).

Inserting the implied field and current components into
(8) and (9), a system of eight linear equations for the eight
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unknown spectral amplitude coefficients, A?’, B?’, A?’,
and A~’, is eventually obtained (Appendix I). By determin-
ing these coefficients, the transformed field components can
be expressed in terms of the Fourier transform of the current
distribution on the strips.

With respect to this distribution the assumption is made at
this point that the transversal current component is negligi-
ble compared with the longitudinal component. Equation (2)
can then be simply written as

/m Ez(x =h).l,zdy =0. (lo)
—cc

Incorporating E= (as a Fourier integral) into (10) and inter-
changing the integration sequence between k ~ and y, the
stationary expression assumes the form (Parseval’s theorem)

K(k’) are the complete elliptic integrals of the first kind. The
module k and its complementary module k‘ are geometri-
cally related parameters (Fig. 1):

k=: k’=~~.
S+2” W

Given the fact that there is always a monotonic increase in
the effective dielectric constant with increasirig frequency,
the characteristic impedance based on this definition will
consequently decrease with increasing frequency.

According to the second, more general, and now estab-
lished definition, the characteristic impedance is formulated
as

P
zc=—

lTl~
(15)

/(
I1?I

%Z x=h, kY). ~~z(–kY). dkY=O. (11)
where P is the real power transported along the line and 1=—.

The formulation of ~z(kY) in terms of ~,Z(k ~) and appropri-
is the current on one strip.

ate algebraic manipulations lead to the final form of the
In order to determine the transported power P, the inte-

stationary expression: gration of the longitudinal component of the Poynting vector

/“

(c, -c,.,, ){e-ly:l.y, tanh(y, h) El. E~l[tanh( y,.h)~l+ely z]+[yltanh (y,.h)+c, yz])l~,,(k,)l2dkY

o E3. {[yl. tanh(yl. h)+c2, y2]. [yl. tanh(yl. h) +e3. y2]+e–2. (e,–l–l )y~yF’tanh(~,h) ~~[yltan h(y,h)+e1y2]} ‘0’

The integration limits have been changed (O to m) because
the integrand is an even function of k ~. Further, it may be
noticed that in place of the propagation constant /3, the
equivalent quantity ~, ~ff(ereff) has been introduced, defined
as ereff = (~/kO)2. ExpressIons for El, E2, Es, El, 62, e3, Cd,
and e are given in Appendixes I and II. Thus a simple
variational formula has been derived through which the
dispersion characteristic of CPS’S can be determined in a
straightforward and numerically economic way. These as-
pects should be appropriately appreciated concerning CAD
applications, The numerical treatment of (12) as weii as
representative results will be presented later.

IV. CHARACTERISTIC IMPEDANCE

The characteristic impedance of CPS has been determined
on the basis of two different definitions commonly used for
MIC transmission lines. The first is associated with the static
characteristic impedance of the corresponding homogeneous
structure, which in our case is represented by two metallic
strips embedded in a homogeneous medium. The dynamic
aspect is taken into account by schematically replacing the
relative permeability of the homogeneous medium with the
effective dielectric constant of the (inhomogeneous) struc-
ture under investigation (“ereff” definition):

(13)

where Z<o is the static characteristic impedance of the
homogeneous structure in vacuum, for which the following
exact formula is valid:

(14)

Here q is the free-space wave impedance, and K(k) and

(12)

over the infinite cross section of the line is necessa~:

JJ
P =Re m a SZ. dxdy

—cc—m

=Re~@ ~m {(EXH~ – EYH~)dy}dx. (16)
—m —m

Making use of Parseval’s theorem and the possibility of
interchanging the sequence of integrations with respect to kY
and x, we arrive at the following expression for the calcula-
tion of the transported power:

p=Re~@ ~M {(~X(x,ky)~~(x,kY)
—m —m

– ~y(x, ky)~}(x, kY)dx}dkY. (17)

The integration with respect to the spatial variable, x can be
carried out analytically for each subregion separately given
the fact that the x dependence of the field components
involved are described by harmonic functions. The results of
this integration are obtained in a straightforward manner,
but being rather lengthy are not presented here. Now, for
the complete evaluation of (17) the remaining integration in
the spectral domain is performed by the same numerical
means used for evaluating the integral in (12). Further, the
strip current in (15) can be formulated as the integral of the
current density over the cross section. A current being pres-
ent only at x = h and suppressing the z dependence, this
integral becomes

Iz=/~J,Z(y)dy. (18)

This can be interpreted asmthe Fourier transform of the
surface current density distrib:~ion taken at the discrete
spectral point k ~ = O. The fact that ~,Z(k ~) has to be in any
case available for the evaluation of (12) and (17) obviously
facilitates the evaluation of the strip current itself and there-
fore the calculation of ZC.

Numerical results for the characteristic impedance and a
discussion thereof will be presented in the following section.
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V. NUMERICAL RESULTS

As can be seen from the formulas pertaining to the char-
acteristic quantities of CPS’S, their determination is linked to
the availability of the Fourier transform ~,z(~ ~) of the as-
sumed strip current distribution. It has been pointed out that
the static charge or stationary current distribution on two
metallic strips in a homogeneous dielectric provides an ade-
quate approximation for the current distribution on CPS’S.
According to [8], the exact current distribution on two metal-
lic strips in vacuum is given by

sgn( y )
I(y) =

W+Jl[(a-(+=r]”
(19)

However, the Fourier transform of such a formula being not
available in closed form, a numerical integration is necessary
for its calculation. The fact that this (spatial-domain) integra-
tion must be performed at all discrete spectral points pre-
scribed by the numerical integration procedure to be ap~lied
for the evaluation of the integrals in (12) and (17) would
significantly add to the overall computational effort.

It can be argued that another feasible approximation for
the distribution of the surface current on (each strip of)
CPS’S is the static charge distribution on a single (isolated)
strip in vacuum, which is exactly known. In this case the CPS
current distribution is to be described as

_l
(fl). (2/w)

,7= ~- for/2.1x[.\(,+w)

0 otherwise.

(20)

The same approximation has been used for a first-order
solution in [1]. The Fourier transform of (20) is easily ob-
tained, starting with the transform of an isolated strip and
applying in the following the shift theorem:

~.z(ky)= o.5j”Jo
(Y)+Y(+)]. (21)

.10 is the Bessel function of the first kind of zero order. The
numerical results both for c, ~ff and the characteristic
impedance presented in this paper are based on (20),

Now, for the numerical treatment of (12), well-known
methods are used, For the solution of this implicit equation
the “regula falsi” method has proved to be an adequate root
determination procedure. The integration of the improper
stationary integral is accomplished by means of a Gauss
quadrature algorithm. The asymptotic behavi$r of the inte-
grand is found to be proportional to l~~z(kY)l-/ kY. In cases
where ~~z(k ~) is described by (21) the integrand becomes
- k-z. This fact allows for setting of the upper integration
limi~ at convenient values. For example, a typical value of
250 [l/cm] for the upper integration limit kY~ is considered
sufficient for configuration parameter sets similar to those
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Numerical results for the propagation constant or, equiva-
Fig. 2. (a) Dispersion characteristic of CPS’Swith s/h as parameter.
E, = 9.o, w\h = 1.5, (b) Characteristic impedance of CPS’Swith s/lr as

lently, for the effective relative dielectric constant (ereff) parameter. e.= 9.0, w/h= 1.5.
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TABLE I
COMPARISONOFCALCULATEDEFFECTIVEDIELECTRICCONSTANT

h/h ereff [Present] ereff [1]

0.01 1.591 3.926 7.877 1.59 3.93 7.90
0.02 1.596 4.046 8.440 1.60 4.05 8.50
0.03 1.602 4.188 9.065 1.60 4.19 9.18
0.04 1.610 4.346 9.733 1.61 4.36 9.85
0.05 1.619 4.515 10.426 1.62 4.54 10.50
0.06 1.629 4.693 11.123 1.63 4.72 11.15
0.07 1.639 4.878 11.806 1.64 4.91 11.95

0.08 1.650 5.066 12.457 1.65 5.07 12.62

0.09 1.662 5.255 13.066 1.66 5.27 13.13

~r 2.5 9.0 20.0 2.5 9.0 20.0

$/h = 0.1; W/h= 1.5.

*
S/hs 0.3, w/h = 1.5

c, =46

s/h= 0.3, w/he 4.5

I [ 1

0,004 0.01 h/~ — 0.4

Fig. 5. Characteristic impedance according to different definitions.

versus the normalized frequency h/A are shown in Figs.
2(a), 3(a), and 4(a). For comparison purposes, the material
and geometric parameters have been chosen to be the same
as in [1]. Allowing for the drawing tolerance, an excellent
agreement between these dispersion characteristics and the
corresponding results in [1] can be ascertained, This assess-
ment is again documented in Table I, where typical results
are shown.

Concerning the characteristic impedance, the same sets of
material and geometric parameters have been used for its
calculation according to definition (15). It may be mentioned
here that the integrand in (17) as function of k ~ has the
same asymptotic behavior as the integrand of the stationary
integral in (12). The numerical results are depicted in Figs.

2(b), 3(b), and 4[b). For the lower frequency region in these
diagrams, there is only partially acceptable agreement with
the results in [1], the present method yielding generally lower
values. However, the important fact to notice here is that
with increasing frequency the dispersive behavior of the
impedance according to our results is fundamentally differ-
ent from the behavior in [1], where a steady decrease is
shown. In our case, in the upper frequency region there is a
clear upward trend of the impedance with increasing fre-
quency. Comparable behavior is encountered in the case of
microstrip.

Fig. 5 shows the dynamic behavior of the characteristic
impedance, on the base of the two different definitions,
across an extended frequency range. Curves (i) pertain to the
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Fig. 6. ,,eff versus the geometric parameter (shape ratio) s\($ + 2w). The parameter P is defined as P = h /(s+ 2w).

“ereff” definition in (13), curves (ii) to the transported-power increasingly accentuated. It may be recalled here that the

related definition in (15). The expected conve~gence of the “ereff” definition is strictly valid for TEM configurations.
two definitions toward the same “static” value is confirmed. The diagrams of Fig. 6 demonstrate the influence of the
Toward the higher frequency region the line progressively geometry-dependent parameters on the propagation con-
departs from TEM-like propagation behavior; therefore the stant (in the practically dispersion-free lower frequency re-
deviation between the two differently defined impedances is gion). The ranges of parameter values for which practical
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design applications
from such diagrams

are feasible can easily be determined

VI. CONCLUSIONS

A spectral-domain stationaw expression for the propaga-
tion constant (“ereff”) and expressions for two different
characteristic impedance definitions have been formulated
for coplanar strips which allow an efficient and reliable
analysis of this MIC transmission line. Numerical results
have been presented which, with respect to the propagation
constant, are in excellent agreement with results arrived at
by means of an established, but nonetheless more expensive,
method (Galerkin’s method). Concerning the characteristic
impedance, according to our results, there is a novel aspect
of the dynamic behavior of this quantity. Contrary to previ-
ously published results showing a steady decrease of the
impedance with increasing frequency, in our case the initial
decrease was followed in the upper frequency region by an
upward turn. The validity of different impedance definitions
has been discussed on the base of representative numerical
results,

APPENDIX I

The system of equations for the spectral amplitude coeffi-

cients has the form

[M][K]=[.7]
with

[K] = [Af,Bf,A~,B~,Ag,A;, Af, A:]T

[J]=[O,OJ.Z,O,O,O,O,O]T
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o 0 1

where

APPENDIX 11
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